

A DOMINANT WEIGHT FOR $GL(n)$ IS
 $\lambda \in \mathbb{R}^n$ SUCH THAT $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$.
 IF $\lambda_n \geq 0$ THIS IS A PARTITION OF
 $|\lambda| := \sum \lambda_i$.

THEOREM (SCHUR, WEYL) GIVEN A DOMINANT WEIGHT THERE IS A UNIQUE IRR.
 OF $GL(n, \mathbb{C})$ WHOSE CHARACTER HAS THE FORM

$$\chi_\lambda \left(\begin{smallmatrix} z_1 & & \\ & \ddots & \\ & & z_n \end{smallmatrix} \right) = z^\lambda + \text{OTHER LOWER TERMS}$$

$$z^\lambda = z_1^{\lambda_1} \cdots z_n^{\lambda_n}. \quad \text{IF } \lambda \text{ IS A PARTITION}$$

$$\chi_\lambda \left(\begin{smallmatrix} z_1 & & \\ & \ddots & \\ & & z_n \end{smallmatrix} \right) = D_\lambda(z_1, \dots, z_n)$$

SCHUR POLYNOMIAL.

"LOWER": PARTIAL ORDER ON \mathbb{R}^n

$$\lambda \geq \mu \text{ IF } \lambda_1 \geq \mu_1, \lambda_1 + \lambda_2 \geq \mu_1 + \mu_2, \dots$$

$$\pi_\lambda \otimes \pi_\mu = \bigoplus_\gamma c_{\lambda, \mu}^\gamma \pi_\gamma.$$

THEOREM KASHIWAMA, NAKASHIMA:

WITH λ AS ABOVE THERE IS A CRYSTAL \mathbb{B}_λ WITH CHAN.

$$\chi_{\mathbb{B}_\lambda} = D_\lambda(z_1, \dots, z_n)$$

$$\chi_{\mathbb{B}_\lambda} := \sum_{\tau \in \mathbb{B}_\lambda} z^{\text{wt}(\tau)}.$$

IF WE CHOOSE THE RIGHT CRYSTAL FOR ALL λ

$$\mathbb{B}_\lambda \otimes \mathbb{B}_\mu = \bigsqcup_\gamma c_{\lambda, \mu}^\gamma \mathbb{B}_\gamma$$

THE DECOMPOSITION OF TENSOR
 PRODUCTS OF REPS INTO IRR.
 MIRRORS THE DECOMPOSITION OF
 CRYSTALS INTO DISJOINT CRYSTALS.

IN HW

$$B_{(1)} \otimes B_{(1,1)} = B_{(1,1,1)} \sqcup B_{(2,1)}$$

$$\widehat{V}_{(1)} \otimes V^* = \mathbb{C}_{\det} \oplus \text{"ADJOINT SQUARE"}$$

↑

STANDARD MODULE
 FOR $sl(3)$

THE COEFS $C_{\mu\nu}^\lambda$ ARE CALLED

LITTLEWOOD RICHARDSON COEFFICIENTS.

IF λ IS A PARTITION

\mathcal{B}_λ : ALL SSYT OF SHAPE λ
IN $\{1, 2, \dots, n\}$.

HOW CAN I CONSTRUCT THIS?

ANOTHER WAY! THE REP'N THEORY
AND CRYSTALS ARE COMPATIBLE.

IF $n = r + \ell$.

$$GL(r) \times GL(\ell) \hookrightarrow GL(n)$$

$$(g, h) \mapsto \begin{pmatrix} g & 0 \\ 0 & h \end{pmatrix}$$

WE CAN TAKE AN IRREP OF

$GL(n, \mathbb{C})$ AND RESTRICT IT TO
 $GL(r, \mathbb{C}) \times GL(s, \mathbb{C})$.

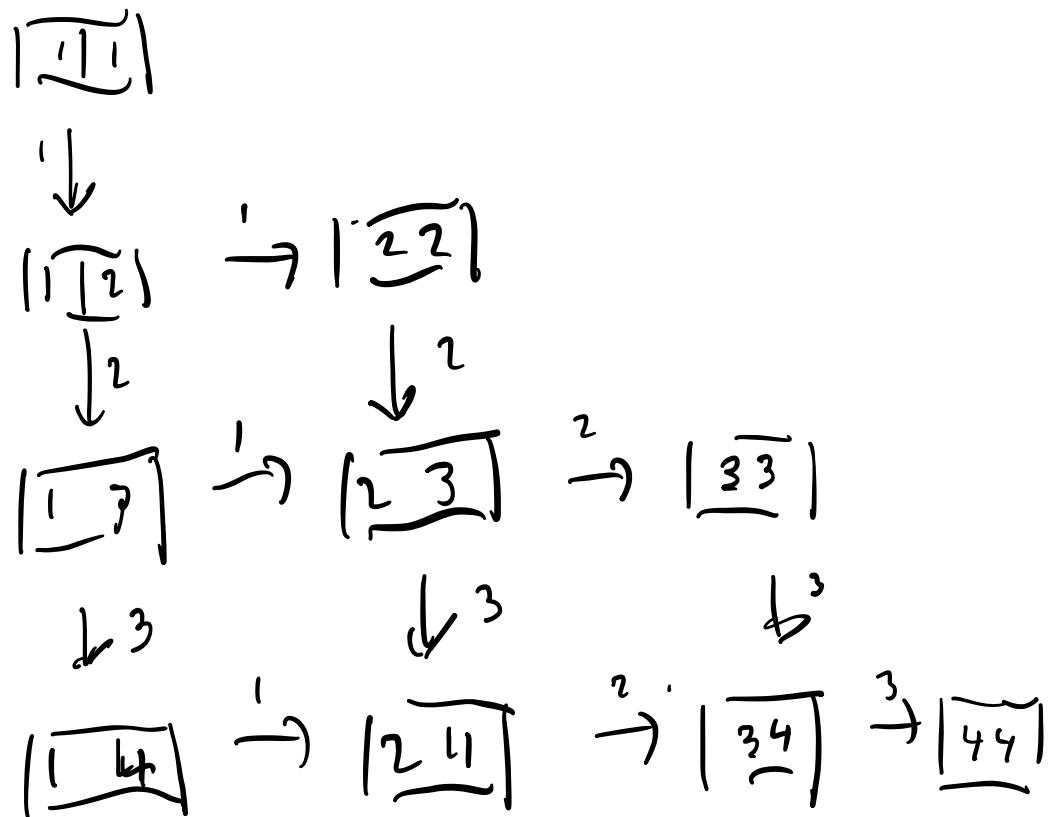
$$\tilde{\Pi}_{\lambda}^{GL(n)} \Big|_{GL(r) \times GL(s)} = \bigoplus_{\mu, \nu} C_{\mu, \nu}^{\lambda} \tilde{\Pi}_{\mu}^{GL(r)} \tilde{\Pi}_{\nu}^{GL(s)}$$

SURPRISINGLY COFFS $C_{\mu, \nu}^{\lambda}$ ARE
 ALSO LITTLEWOOD-RICHARDSON COFFS.

FOR CRYSTALS YOU CAN GET
 THE CRYSTAL FOR $GL(r) \times GL(s)$
 CRYSTAL BY ERASING SAME EDGES.

MORAL: CRYSTAL THEORY CLOSELY
 MIRRORS THE REP'N THEORY.

$GL(4)$ CRYSTAL $\mathcal{B}_{(2)}$



$v^2 \mathbb{C}^4$ 10-DM's IRREP of
 $GL(4)$

$$\begin{array}{ccc}
 \downarrow & & \\
 GL(4) \times GL(2) & \pi_{(2)} \otimes \pi_{(0)} \oplus \pi_{(1)} \otimes \pi_{(1)} & 2 \times 2 \\
 & \oplus \pi_{(0)} \otimes \pi_{(2)} &
 \end{array}$$

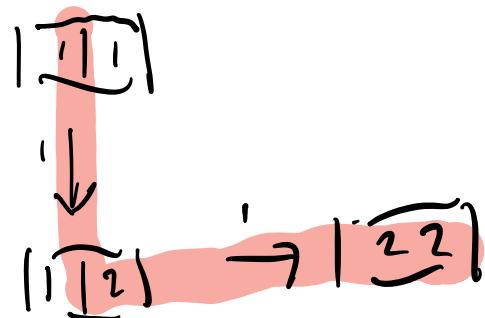
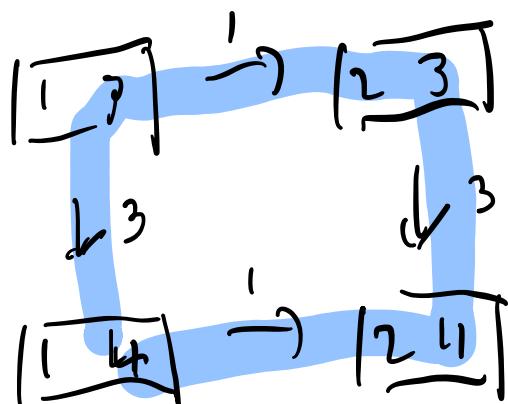
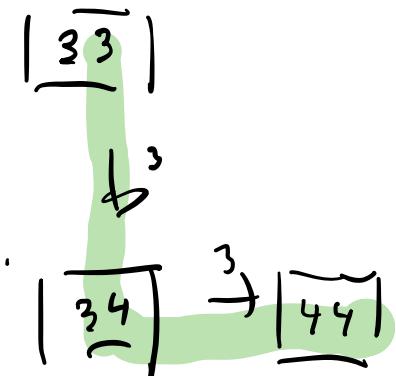
$$3 + 4 + 3 = 10$$

. . .

BRANCHING RIG.

FOR CRYSTAL:

ERASE \rightarrow EDGES.



$$GL(2) \times GL(2) \hookrightarrow GL(4)$$

$$f_1 \quad f_3$$

$$f_1, f_2, f_3$$

$GL(r+\Delta)$ CRYSTAL HAS $r+\Delta-1$
 SIMPLE ROOTS $\alpha_1, \dots, \alpha_{n-1}$
 $n = r + \Delta$.

$GL(r) \times GL(\Delta)$ $r-1$ ROOTS IN $GL(r)$
 $\Delta-1$ ROOTS IN $GL(\Delta)$

$\mathbb{R}^2 \times \mathbb{R}^2$ $(1, -1, 0, 1)$
 $(1, -1)$ $(1, -1)$ $(0, 0, 1, -1)$

MISSING ROOT THAT IS A ROOT

FOR $GL(4)$ BUT NOT $GL(2) \times GL(2)$ IS

$\alpha_1 (0, 1, -1, 0)$.

THE CRYSTAL OPERATION IS DISCARD
 ALL EDGES LABELED 2.

ASSUME λ IS A PARTITION OF $\underline{q_k}$

HOW TO CONSTRUCT

π_λ β_λ .

PARALLEL CONSTRUCTIONS.

THEOREM: "SCHUR-WEYL DUALITY"

WE CAN FIND π_λ BY

TAKING

$\bigotimes^R \mathbb{C}^n$

STANDARD
MODULE

AND DECOMPOSING INTO IRREDUCIBLES.

more precise:

$\bigotimes^h \mathbb{C}^n$ has

COMMUTING ACTIONS of S_n , $GL(n, \mathbb{C})$

$$\bigotimes^h \mathbb{C}^n \cong \bigoplus_{\lambda \vdash h} \pi_{\lambda}^{S_h} \otimes \pi_{\lambda}^{GL(n, \mathbb{C})}.$$

$$S_n \times GL(n)$$

THIS MEANS MULTIPLICITY OF

$\pi_{\lambda}^{GL(n, \mathbb{C})}$ IN $\bigotimes^h \mathbb{C}^n$ IS

DIM $\pi_{\lambda}^{S_h}$.

S_3

	1	(123)	(12)
triv. $\chi_{(1)}^{s_3}$	1	1	1
sign. $\chi_{(111)}^{s_3}$	1	1	-1
2-dim. $\chi_{(2,1)}^{s_3}$	2	-1	0

so $\mathbb{C}^3 \mathbb{C}^n$ DEcompose

into IRN. of $GL(n)$

1 copy of $\mathbb{C}^3 \mathbb{C}^n$

1 copy of $\wedge^3 \mathbb{C}^n$

2 copies of $\prod_{(1,1)}^{CL(n,1)}$.

" $\otimes_{IM} \prod_{\lambda}^{s_3}$.

SO OVER EXPECTATION

$$\mathbb{B}_{(1)} \otimes \mathbb{B}_{(1)} \otimes \mathbb{B}_{(1)} =$$

$$\mathbb{B}_{(3)} \sqcup \mathbb{B}_{(1,1,1)} \sqcup ? \mathbb{B}_{(2,1)}.$$

A PARTITION OF \mathbb{B}

THERE ARE MANY COPIES OF

$$\mathbb{B}_x \text{ IN } \underbrace{\mathbb{B} \otimes \cdots \otimes \mathbb{B}}_n$$

THERE IS A DISTINGUISHED ONE
THAT IS EASY TO DESCRIBE.

CRYSTALS $\mathbb{B}_{(n)}$ AND $\mathbb{B}_{(\underbrace{1, \dots, 1}_R \text{ TIMES})}$

CRYSTALS OF ROWS AND COLUMNS.

$$\text{CRYSTAL } B_{(n)} = \left\{ \begin{smallmatrix} \boxed{i_1 \dots i_n} \\ i_1 \leq i_2 \leq \dots \leq i_n \end{smallmatrix} \right\}$$

ROWS IS ISOMORPHIC TO

$$\left\{ \boxed{1 \dots n} \otimes \dots \otimes \boxed{1 \dots n} \right\} \subseteq B \otimes \dots \otimes B$$

n TIMES.

$$B_{(2)}^{C_{L(3)}} =$$

$$\left\{ \boxed{1} \otimes \boxed{1}, \boxed{2} \otimes \boxed{1}, \boxed{3} \otimes \boxed{1}, \right. \\ \left. \boxed{2} \otimes \boxed{2}, \boxed{2} \otimes \boxed{3}, \boxed{3} \otimes \boxed{3} \right\}.$$

WE WANT TO CHECK THIS SUBSET

$\mathbb{X}^n \mathbb{B}$

$\mathbb{B} = \mathbb{B}_{(1)}$

IS CLOSED UNDER $\ell_{i,1}, f$:

COMBINATORIAL VERIFICATION. $n = \boxed{2}$

$i \leq j$

$$\boxed{i} \oplus \boxed{j}$$

$$\boxed{i} \boxed{j}$$

$$\boxed{i+1} \boxed{j}$$

UNLESS $i = j$

CRYSTALS of COLUMNS.

$$\begin{bmatrix} i_1 \\ \vdots \\ i_n \end{bmatrix}$$

$$i_1 < i_2 < \dots < i_n$$

$$\rightsquigarrow \begin{bmatrix} i_1 \end{bmatrix} \otimes \dots \otimes \begin{bmatrix} i_n \end{bmatrix}$$

PRODUCES A SUBSET OF $\otimes^n B$

THAT IS DISJOINT FROM COLUMNS
OF ROWS.

GENERAL CASE:

$$(\lambda_1, \dots, \lambda_r)$$

A SSYT OF THIS SHAPE
CONSISTS OF ROWS.

$$\lambda = (3, 1)$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 3 \\ 1 & 2 & 1 \end{bmatrix} \rightsquigarrow B_{(3)} \oplus B_{(1)}$$

$$\begin{bmatrix} 1 & 1 & 3 \end{bmatrix} \oplus \begin{bmatrix} 2 \end{bmatrix}$$

$$\rightsquigarrow B \oplus B \oplus \oplus \oplus B$$

ALREADY
EXPANDED

FOR CRYSTALS
OF ROWS

$$\begin{bmatrix} 3 \end{bmatrix} \oplus \begin{bmatrix} 1 \end{bmatrix} \oplus \begin{bmatrix} 1 \end{bmatrix} \oplus \begin{bmatrix} 1 \end{bmatrix}$$

$$B_\lambda \rightsquigarrow B_{(\lambda_1)} \oplus B_{(\lambda_2)} \oplus \dots$$

EACH
ROW

$$\begin{array}{c}
 \vdots \quad \sim \boxed{x_1} \otimes \boxed{x_4} \oplus \dots \\
 r_1 \quad \sim x^{1_1} B \oplus x^{1_2} B \oplus \dots
 \end{array}$$

REFERENCE SECTION 3.1 OF
CRYSTAL BOOK.

NEXT TIME RSK : ROBINSON -
SCHENKEL -
KNUTA

FUNDAMENTAL TABLEAUX ALGORITHMS.

RSK IS A BIJECTION

WORDS i_1, \dots, i_n $(1 \leq i_j \leq n)$

Pairs of tableaux T_1, T_2 .

T_1 is a SSYT

T_2 is a STANDARD TABLEAU.

ENTRIES IN $\{1, 2, \dots, k\}$ $\lambda \vdash k$

EACH ROW, COLUMN STRICT

EACH elt in $\{1, \dots, q\}$ APPEARS
ONCE.

FACT: $\text{M. REP } \prod_{\lambda}^{S_n}$ HAS

DIMENSION = # OF. STANDARD
TAGLEAVX OF SHAPE λ .